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Abstract. We have performed all-electron ab initio calculations for TiB2 in the athermal limit
using the CRYSTAL95 code. The lattice parameters of the AlB2-type structure were optimized
as a function of pressure. The fitting of a Murnaghan equation of state resulted in values of
B0 = 292±1 GPa andB ′

0 = 3.34±0.03 for the bulk modulus and its first derivative at zero pressure.
The values for the linear bulk modulus along the a-axis and the c-axis are Ba0 = 1031 ± 3 GPa
(B ′

a0 = 10.6 ± 0.2) and Bc0 = 675 ± 3 GPa (B ′
c0 = 8.8 ± 0.2), respectively. All five independent

elastic constants were calculated, and the analysis of the elastic behaviour of titanium diboride
indicates that this compound is more isotropic than one would suppose from its crystal structure.
The discussion on the nature of the chemical bonds and the electronic charge transfer in titanium
diboride gives some insight into its mechanical properties, such as its high hardness, despite an
apparent layered structure. In this sense, the analysis of the charge-density distribution shows a non-
negligible interaction between graphite-like boron planes along the c-axis, which increases with
pressure, and suggests a three-dimensional picture for the TiB2 structure, instead of the traditional
planar description.

1. Introduction

Since the advent of quantum mechanics in the first decades of this century, one of the biggest
challenges in physics has been the development of strategies to overcome the difficulties
arising in the calculation of the properties of many-body systems. Nowadays, the availability
of sophisticated codes and powerful computers has made it entirely possible to undertake
ab initio computer experiments. Among the many fields in condensed matter physics where
this approach can be exploited, we have particular interest in the study of the pressure behaviour
of very hard materials. Usually, extremely high pressures are needed for the study of such
materials in order to induce some significant change in their structures. At such high static
pressures, the production of hydrostatic conditions is not always possible and the samples
are necessarily very small. This imposes many restrictions on the kind and precision of the
analytical techniques which can be used to extract information from the sample under pressure.
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In such a context, carrying out complementary computer experiments is very convenient, in at
least two respects: they enable us to ‘process’ a material under conditions that are sometimes
hard to reproduce experimentally; and they can give us some insight into the actual behaviour
observed in real experiments.

Titanium diboride is a material which presents a very attractive combination of mechanical,
chemical and transport properties such as high hardness (from 20 to 30 GPa at room
temperature, depending on the applied load), high melting point (about 3500 K), low density
(4495 kg m−3), low electrical resistivity (0.13µ�m), good thermal conductivity (ranging from
37 to 122 W m−1 K−1, at 300 K) and excellent chemical inertness [1–5]. These characteristics
make it a potential candidate for several high-performance applications, in cutting tools,
electrodes and wear-resistant components [1–3]. Just for comparison, an excellent thermal and
electric conductor such as copper, with a density of 8960 kg m−3 (about twice that of TiB2),
has an electrical resistivity of 0.017 µ� m and a thermal conductivity of 398 W m−1 K−1 at
300 K [4].

Despite the prominence that TiB2 has found in high-technology applications, some of its
physical properties are scarcely known. For example, to our knowledge there is no published
experimental result for the pressure dependence of the TiB2 lattice parameters and unit-
cell volume. Consequently, the TiB2 bulk modulus is usually obtained by measuring the
sound propagation velocity along different axes for TiB2 single or polycrystalline samples.
However, high-purity, large and defect-free single crystals of TiB2 are difficult to prepare and,
consequently, the measurement of the elastic constants is complicated by the small size of
the samples employed in the ultrasonic experiments. Another source of difficulties found
by experimentalists arises from the existence in the Ti–B phase diagram of a stability field
for non-stoichiometric phases TiBx with x ≈ 2 [3]. These factors, along with the difficulty
of obtaining fully densified polycrystalline samples, could possibly account for the spread
observed in the literature for several physical properties of titanium diboride.

Titanium diboride crystallizes in the AlB2 structure—space group P6/mmm, with one
titanium at the origin and two boron atoms at the site 2d (1/3, 2/3, 1/2)—see figure 1. Its
structure is usually described as a simple stacking of graphite-like parallel sheets of boron
intercalated with a simple hexagonal lattice of titanium, disposed in such a way that each
titanium is surrounded by twelve borons, and each boron is coordinated by six Ti atoms.
Although topologically correct, this simple two-dimensional picture can hardly account for
the mechanical properties of TiB2 (and that of the transition-metal diborides in general), such
as its high strength and hardness.

There are several theoretical studies in the literature, involving different approaches, whose
main concern is the electronic structure of the transition-metal diborides, in particular those
with the AlB2 structure [6–13]. However, only a few of them concern the pressure behaviour
and elastic properties of these compounds. Among these, we must cite in particular van Camp
and van Doren [13], who performed density functional calculations (in both local density
(LDA) and generalized gradient (GGA) approximations) for TiB2. In their work, van Camp
and van Doren imposed a second-order polynomial expression for the energy dependence on
the lattice parameters, and fitted its coefficients to forty-two points on the ab initio energy
hypersurface. In our paper we will follow a different approach, in that the total energy is
evaluated directly ab initio, each time we need it. Moreover, despite the approximate inclusion
of correlation effects in DFT clearly giving better estimates for binding energies, the same is
not always true for other physical properties that depend on energy derivatives. It seems
also that the exact treatment of exchange in the Hartree–Fock approximation is of primary
importance in the description of the electronic charge distribution of covalent solids [14].
This particular advantage of HF theory over DFT will prove to be of great value for the
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Figure 1. TiB2 crystal structure. Large and small spheres represent titanium and boron atoms,
respectively.

understanding of the effect of the interaction between boron planes on the elastic properties
of TiB2.

In this context, in this paper we provide a set of physical properties for titanium diboride,
calculated from first principles within the Hartree–Fock mean-field approximation. Our
findings are compared with other theoretical and experimental results, in order to assess the
relative merits of our approach. The main intent of this work is to provide a coherent picture for
the mechanical and bonding properties of TiB2, based on the analysis of its elastic behaviour
and electronic charge-density distribution.

This paper is organized as follows. In section 2 we present the computational procedure
and the basis sets used to undertake the calculations. Section 3 presents the results obtained for
the equilibrium geometry and equation of state for TiB2 at T = 0. In section 4 we deal with
the calculation of the single-crystal elastic constants and the Hill averages of the elastic moduli
for an isotropic, homogeneous polycrystalline aggregate of titanium diboride. The results
obtained are discussed and compared with other theoretical and experimental results available
in the literature. Electronic charge-distribution maps for TiB2 are shown in section 5, where we
discuss some aspects regarding chemical bonding and its influence on the mechanical properties
of titanium diboride. Finally, in section 6 we present the main conclusions of this work.

2. Computational details

The all-electron ab initio periodic Hartree–Fock calculations were performed with the
CRYSTAL95 code [15, 16]. The crystalline orbitals used as the basis for the wavefunction
expansion were constructed from a linear combination of atom-centred Gaussian orbitals (HF-
LCCO approximation). An 86-4113G basis set was chosen for titanium. The initial exponents
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and coefficients for this basis set were taken from Saunders [17]. The exponents and contraction
coefficients of the valence orbitals were further optimized by minimizing the total energy for
crystalline TiB2†. The optimal exponent of the outermost titanium 5sp orbital could not be
found by minimizing the total energy of the crystalline compound, as the energy decreases
monotonically with the sp exponent until a numerical catastrophe occurs [15]. Consequently,
the adopted value represents a compromise between numerical convergence, minimal total
energy and the computational resources needed to undertake the calculations. The resulting
titanium basis set used in this work is given in table 1. For boron, the basis set used was
the standard 6-21G, with the external sp exponent set to 0.19 [18]. All the calculations
were performed in the athermal limit. To ensure convergence and high numerical accuracy,
very tight tolerances were employed in the evaluation of the infinite Coulomb and exchange
series: 10−8 for the exchange overlap, Coulomb overlap, Coulomb penetration and the first
exchange pseudo-overlap; and 10−14 for the second exchange pseudo-overlap tolerance [15].
The Fock matrix has been diagonalized at 133 k-points within the irreducible Brillouin zone,
corresponding to a shrinkage factor of 12 in the Monkhorst net [19]. Owing to the metallic
character of TiB2, a dense Gilat net [20] was defined with a total of 793 k-points in reciprocal

† The valence exponents and contraction coefficients were optimized by sequential line minimization, with a Unix
script shell developed by M Towler (see http://www.tcm.phy.cam.ac.uk/˜mdt26/).

Table 1. The titanium basis set. Exponents (in au) and coefficients of the s, p and d Gaussian
functions.

Coefficients

Type Exponent s p d

s 228000.0000 0.000228
32450.0000 0.001929

6888.6000 0.011100
1802.4000 0.049990

543.2000 0.170100
187.4400 0.369160

73.1900 0.402700
30.4500 0.144500

sp 553.4000 −0.005460 0.00853
132.1800 −0.070400 0.06021

43.6100 −0.117700 0.21330
17.0200 0.245100 0.38710

7.2600 0.670800 0.40210
2.3760 0.286000 0.23900

sp 28.3000 0.002700 −0.02710
11.2400 −0.151500 −0.07670

4.6560 −0.744000 0.16650
1.8650 1.032000 1.31400

sp 0.7138 1.000000 1.00000

sp 0.1500 1.000000 1.00000

d 6.0511 0.1161
1.4468 0.3429
0.3267 0.5250
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space, corresponding to a shrinkage factor of 24. In order to reduce the numerical noise, all
the calculations were performed with the same set of indexed bielectronic integrals selected
from a reference geometry [15]. To improve the convergence, the Fock matrix (Fnew

i ) at the
self-consistent-field cycle i was made equal to

Fnew
i = (1 − p)Fi + pFi−1 (1)

where p is a mixing parameter equal to 0.3 [15]. In general, some 20 to 30 SCF cycles were
sufficient to achieve convergence in total energy to within 10−6 to 10−8 Hartree per primitive
cell. A further increase in the cut-off for the evaluation of bielectronic integrals as well as in
the shrinkage factors that define the Monkhorst and Gilat nets resulted in changes in the total
energy smaller than 1 mHartree.

3. TiB2 equilibrium geometry and equation of state

The total HF energy of TiB2 was minimized as a function of the hexagonal lattice parameters
using the conjugate-gradient algorithm of Polak and Ribiere [21]. No constraints were imposed
on the c/a ratio, i.e., both lattice parameters were optimized simultaneously. As can be seen in
table 2, the resulting lattice parameters a and c are in excellent agreement with the experimental
values, differing from those of Post et al [22] by −0.1% and 0.3%, respectively. No correction
was made to account for the temperature effect on the lattice parameters, which should be
almost negligible in any case.

Table 2. Lattice parameters, bulk moduli (B0) and pressure derivatives (B ′
0) of titanium diboride

at zero pressure.

Reference a0 (Å) c0 (Å) V0 (Å3) B0 (GPa) B ′
0 Biso (GPa)

Experimentala

Silver and Kushida [24] 3.028 3.228 25.6
Post et al [22] 3.030 3.230 25.7
Gilman and Roberts [25] 399 436
Spoor et al [26] 240 247
Manghnani et al [27] 239 240
Wrightb 194 239
Wrightc 237 253

Theoretical

This work 3.027 3.240 25.7 292 3.34
This workd 299 306
Van Camp and van Dorene 3.023 3.166 25.1 270 273
Van Camp and van Dorenf 2.993 3.147 24.4 260 260
Tian and Wang [6] 2.895 3.086 22.4 377

a Bulk modulus calculated from measured single-crystal elastic constants.
b Bulk modulus calculated from the Voigt estimate of the single-crystal elastic constants [28].
c The same as above, but in the Reuss approximation.
d As calculated from the elastic constants given in table 3, later.
e Density functional theory (DFT) with ab initio norm-conserving pseudopotentials in the local
density approximation (LDA) for the exchange–correlation contribution to the energy [13].
f The same as above, but in the generalized gradient approximation (GGA).

In order to provide some insight into the pressure behaviour of TiB2, the HF energy of
titanium diboride was minimized as a function of the c/a ratio for selected values of the
primitive-cell volume. The dependence of the HF energy (E) on the volume of the TiB2
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primitive cell can be seen in figure 2(a). The solid curve in figure 2(a) represents the fitted
Murnaghan equation of state:

E = E0 +
B0

B ′
0

(V − V0)− B0V0

B ′
0(1 − B ′

0)

[(
V

V0

)1−B ′
0

− 1

]
(2)

where V is the primitive-cell volume, B is the bulk modulus andB ′ its first pressure derivative.
The zero index means the values at zero pressure. The fitting yielded B0 = 292 ± 1 GPa,
B ′

0 = 3.34 ± 0.03 and V0 = 25.8 Å3. The quoted uncertainties refer to the standard
deviation of the fitted parameters. These values are compared in table 2 with those derived
from single-crystal elastic constants and other theoretical estimates taken from the literature.
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Figure 2. (a) TiB2 HF energy as a function of the primitive-cell volume. The solid curve is the
resulting fit of the Murnaghan equation of state (2). (b) The pressure dependence of the TiB2
primitive-cell volume. The solid curve represents the Murnaghan equation (3) with the parameters
taken from the fitting in (a).
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The primitive-cell equilibrium volume at zero pressure agrees within 0.1 Å3 with the value
obtained from the unconstrained optimization of the TiB2 structure (see table 2), revealing the
consistency of our calculations and the adequacy of the Murnaghan equation of state.

From equation (2), the pressure acting on the system as a function of the primitive-cell
volume can be obtained through the thermodynamic relationship

P(V ) = −dE

dV
= B0

B ′
0

[(
V0

V

)B ′
0

− 1

]
. (3)

The resulting pressure dependence of the TiB2 primitive-cell volume is shown in figure 2(b).
With the pressure calculated according to equation (3) and the optimized hexagonal c/a

ratio at each volume, we obtained the pressure dependence of the titanium diboride lattice
parameters, as shown in figure 3. The linear bulk modulus at zero pressure Ba0 and Bc0,
i.e., the inverse linear compressibility along the crystallographic axis, under isotropic stress,
and their pressure derivatives, were obtained by fitting the Murnaghan equation (3) to the
points in figure 3(a). Proceeding in this way, the values obtained were Ba0 = 1031 ± 3 GPa
(B ′

a0 = 10.6 ± 0.2) and Bc0 = 675 ± 3 GPa (B ′
c0 = 8.8 ± 0.2). Both TiB2 linear bulk moduli

rapidly increase with pressure, despite Bc always being smaller than Ba in the pressure range
up to 115 GPa. The extremely high linear bulk modulus parallel to the boron planes has a
magnitude comparable to that of the carbon planes in graphite, namely Ba0 = 1250 GPa (with
fixed B ′

a0 = 1) [23]. Indeed, the TiB2 linear bulk modulus Ba will become even greater than
that of a hypothetical graphite structure at pressures above 23 GPa (single-crystalline samples
of graphite are stable just up to 14 GPa [23]). The TiB2 linear bulk modulusBc0 is one order of
magnitude higher than that of graphite, a true layered structure. In section 5 it will be shown
that the charge-density analysis for TiB2 can shed some light on these interesting results.

The equilibrium lattice parameters resulting from the fitting of the Murnaghan equation
(3) to the points in figure 3(a), a0 = 3.019 Å and c0 = 3.257 Å, differ by −0.26% and 0.52%,
respectively, from the values obtained by unconstrained structure optimization, as quoted in
table 2.

4. Elastic properties

The five independent elastic constants of titanium diboride were calculated by imposing a set of
different deformations on the hexagonal lattice and following the dependence of the primitive-
cell energy on the applied strain. The lattice deformations employed here were those suggested
by Fast, Wills, Johansson and Erikson [29]. They were chosen in such a way that the second-
order term in the expansion of the strain energy as a function of the adimensional deformation
parameter ε could be related to a particularly simple combination of the elastic constants. The
atomic coordinates were not optimized each time the lattice was distorted. This should not
affect the result for c11 + c12 and c33, as the site symmetries and the Bravais lattice remain
unchanged for the particular lattice deformation involved in their estimate. On the other hand,
the effect of the residual inner stress on the other elastic constants should not be greater than
about 10% of the calculated values, as can be inferred from previous results in the literature (see,
e.g., the results for MgF2 [30]). The dependence of the strain energy on ε is shown in figure 4,
for the five distinct lattice deformations. To reduce the influence of high-order terms in the
expansion of the strain energy, the maximum deformation amounts to ±2% of the equilibrium
lattice parameters. Third-order polynomials were fitted to the data in figure 4, from which
the elastic constants of TiB2 were calculated according to equations (6) to (15) of reference
[29]. The effect of introducing high-order terms in the polynomial fitting was negligible. The
results are given in table 3. A further reduction of the maximum lattice deformation did not
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Figure 3. (a) The pressure dependence of the TiB2 lattice parameters a (full circles) and c (open
circles). (b) The c/a ratio as a function of pressure. The solid curves in (a) show the fitting of the
Murnaghan equation (3) for the lattice parameters.

result in elastic constants significantly different from those quoted in table 3. The deviation
from zero deformation of the minimum in the energy curve for the calculation of c33, seen in
figure 4, just means that the algorithm used to search for the structure of minimum energy was
not exhaustively iterated. In any case, the correction for the lattice parameters, owing to this
observed deviation, should amount to only about 0.5%.

Among the five elastic constants of TiB2, the value of c44 was particularly difficult to obtain,
since its calculation involves a triclinic deformation of the hexagonal unit cell, increasing by
a factor of four the number of points needed to interpolate the wavefunction in the irreducible
Brillouin zone (keeping a shrinkage factor of 12 in the Monkhorst net).

Despite the large discrepancies between the reported experimental single-crystal elastic
constants for TiB2, the analysis of the data in table 3 can reveal some trends in our results.
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Figure 4. The dependence of the strain energy on the adimensional lattice deformation parameter
ε. The inset in each panel shows the specific combination of elastic constants in the second-order
term of the E(ε) expansion, from which the elastic constants were obtained [29].

There is a good agreement between our values for c13 and c33 and those calculated by van
Camp and van Doren [13]. On the other hand, the value obtained by them for c11 + c12 is
between 15 and 20% (depending on the particular functional used for the exchange–correlation
contribution to energy) smaller than our result. Our estimates for the elastic constants c13 and
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Table 3. Elastic constants of titanium diboride (GPa).

Reference c11 c12 c13 c33 c44

Experimental

Gilman and Roberts [25] 690 410 320 440 250
Spoor et al [26] 660 48 93 432 260
Manghnani et ala 588 72 84 503 238
Wrightb 672 40 125 224 232
Wrightc 711 17 118 349 240

Theoretical

This work 786 127 87 583 271
Van Camp and van Dorend 777e 83 568
Van Camp and van Dorenf 730 78 572

a TiB2 polycrystalline elastic stiffnesses [27].
b Voigt estimates of the single-crystal elastic constants calculated from the reported values of
Manghnani, Fisher, Li and Grady [27] after correction for texture effects [28].
c The same as above, but using the Reuss approximation.
d DFT with ab initio norm-conserving pseudopotentials in the local density approximation (LDA)
for the exchange–correlation contribution to the energy [13].
e c11 + c12.
f The same as in note d, but in the generalized gradient approximation (GGA).

c44 of TiB2 compare well with the values measured at room conditions by Spoor et al [26]. The
agreement is worse for c11, c33 and c12. However, one should note the great variance among the
experimental results, mainly for c12. The DFT value for c11 + c12 is closer to the experimental
results than the corresponding HF estimate of this work. However, both HF and DFT (in the
LDA and GGA approximation) approaches lead to a value for c33 somewhat greater than the
experimental one. This tendency of HF calculations to overestimate some elastic constants
was already pointed out by several authors (see, e.g., references [30–32]).

From the general relationship between elastic compliances (sij ) and bulk compress-
ibility [33]

1

B
= s11 + s22 + s33 + 2(s12 + s23 + s31) (4)

one obtains the bulk modulus at zero pressure for a single crystal with hexagonal symmetry
(without constraints on the c/a dependence on lattice strain) as given by

B0 = c33(c11 + c12)− 2c2
13

c11 + c12 − 4c13 + 2c33
. (5)

With the elastic constants from table 3, the above equation yields B0 = 299 GPa, only 2.4%
higher than the value obtained from the fitting of the Murnaghan equation of state to the points
in figure 2(a). This reveals that the whole set of calculated elastic constants is consistent with
the bulk modulus obtained through the analysis of the volume dependence of the primitive-cell
energy, as done in section 3.

The elastic anisotropy of a TiB2 single crystal can be best appreciated by plotting a
tridimensional representation of the directional dependence of Young and linear bulk moduli
[33] (figure 5). The surface of revolution representing the directional dependence of the TiB2

bulk modulus, calculated from the set of elastic constants given in table 3, intercepts the a-
axis at 1043 GPa and the c-axis at 700 GPa, in good agreement with the Ba0- and Bc0-values
determined from the pressure dependence of the lattice parameters (section 3).

The Young modulus surface of revolution intercepts the c-axis at 566 GPa and the a-axis
at 756 GPa. In other words, the Young modulus parallel to the basal plane is about 30% higher
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Figure 5. The directional dependency of the bulk (above) and Young (below) moduli of titanium
diboride. The axis scales are given in GPa.

than the one parallel to the c-axis. This plot can be directly compared to the experimental
results given by Spoor et al [26].

The effect of the anisotropic linear compressibility on the overall compressibility of
titanium diboride can also be evaluated by calculating the isotropic bulk modulus (Biso), i.e.,
the bulk modulus obtained under the assumption that the c/a ratio remains unchanged when
the lattice is subjected to an isotropic stress. Biso can be written in terms of the elastic
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constants as [29]

Biso = 2

9

(
c11 + c12 + 2c13 +

c33

2

)
. (6)

With our set of elastic constants, the above expression yields Biso = 306 GPa, approximately
2.3% above the value obtained from equation (5) when relaxing the c/a ratio. The c/a ratio
decreases by only about 2% from ambient pressure to 115 GPa (see figure 3(b)).

There is a substantial amount of experimental work devoted to the determination of the
elastic moduli of polycrystalline titanium diboride. To extend the comparison of our results
with experiment, the calculated single-crystal elastic constants were used to estimate the
averaged elastic moduli of an isotropic polycrystalline aggregate of titanium diboride. In
table 4 we report the Hill averages [35] for the Young, shear and bulk moduli, as well as
the Poisson ratio for TiB2. The Hill averages represent the mean value between the Voigt
and Reuss bounds on the elastic moduli. Our results are systematically higher than those
measured by Wiley, Manning and Hunter, after correction for porosity [26], a consequence of
the overestimation of c11 + c12 and c33. The Poisson ratio agrees well with experiment.

Table 4. Comparison between measured TiB2 polycrystalline elastic moduli and Hill averages
derived from elastic constants. Young (E), shear (G) and bulk (B) moduli are all given in GPa.
The Poisson ratio (σ ) is adimensional.

Reference E G B σ

Experimental results with polycrystalline samples

Abbate, Frankel and Dandekar [37] 549 247 238 0.114
Grady [38] 522 249 193 0.049
Gust, Holt and Royce [36] 541 237 251 0.141
Wiley, Manning and Huntera 505 228 214 0.109
Wiley, Manning and Hunterb 568 258 237 0.101

Hill averages from single-crystal elastic constants

This work 670 296 303 0.132
Gilman and Roberts [25] 447 169 417 0.321
Spoor et al [26] 579 262 244 0.105
Wrightc 539 240 238 0.122

a Sample with 6% porosity [34].
b The same as above, after correction for porosity [26].
c Calculated from the single-crystal elastic constants estimated from the polycrystalline elastic
stiffnesses of titanium diboride after correction for texture [28].

One possible measure of the TiB2 elastic anisotropy is given by the ‘percentage
anisotropies’ in the compressibility and shear [26]. These quantities, defined as

A∗
comp = BV − BR

BV + BR

(7)

and

A∗
shear = GV −GR

GV + GR

(8)

range from zero (perfect elastic isotropy) to 100%, the maximum anisotropy. In the above
expressions, B and G are the bulk and shear moduli, as estimated from the Voigt (subscript V )
and Reuss (subscript R) approximations. The ‘percentage anisotropies’ for titanium diboride,
as derived from our set of calculated elastic constants, are given in table 5, where they are
compared to the values calculated from the single-crystal elastic constants measured by Gilman
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Table 5. Percentage anisotropy in the compressibility and shear for titanium diboride.

Percentage anisotropy

Reference A∗
comp (%) A∗

shear (%)

This work 1.3 0.7
Gilman and Roberts [25] 4.4 6.3
Spoor et al [26] 1.3 1.5

and Roberts [25] and Spoor et al [26]. As can be seen, a fair agreement is observed with the
results of Spoor et al, supporting their conclusion that TiB2 is more isotropic than previously
supposed.

The analysis of the directional dependence of Young and bulk moduli (figure 5), the
comparison between fully relaxed and isotropic bulk moduli, as well as the ‘percentage
anisotropies’ given in table 5, all suggest that titanium diboride is much more isotropic than one
would suppose exclusively on the basis of the usual description of its ‘planar’ crystal structure.
In fact, it seems that the interactions between boron planes are not negligible at all and must
be taken into account in order to better understand the origin of the mechanical properties of
TiB2. In section 5, it will be shown how electronic charge-density maps give support to this
interpretation.

5. Electronic charge-density maps

From the crystal structure of TiB2 depicted in figure 1, one could expect to find a substantial
non-uniformity in the bonding properties. This anisotropy can be appreciated in figure 6. The
bonding between in-plane boron atoms is strongly covalent, as evidenced by the maximum
in the charge density at the bond middle point (figure 6(a)). Such localized bonding is not
evident in the plane occupied by titanium. In contrast, the metallic character of the titanium
planes can be appreciated in figure 6(b), which shows the titanium cores immersed in a sea of
charge-density difference of about 0.005 e Bohr−3.

A charge transfer from the neighbourhood of the titanium atoms is clearly seen in
figure 6(c), which maps the charge-density difference in the plane 110. Another feature
of interest in this figure is the charge build-up along the line joining boron atoms in adjacent
planes. As can be seen in figure 6(d), as pressure increases to 115 GPa, there is also an
increasing of the charge transfer from the region between titanium atoms to an envelope
of charge around boron atoms and also to a bimodal charge density accumulating between
boron planes.

Any particular criterion for the partition of the electronic charge among the components
of a polyatomic system—a solid, in this case—will imply some degree of arbitrariness. For
instance, the Mulliken population analysis [41], in particular, can yield very different results
depending, for instance, on small changes in the basis set employed in the calculations [39,40].
In spite of that, we show in table 6 and table 7 the results of a Mulliken population analysis,
including both valence shell and bond-overlap populations for TiB2 at several pressures, as
a complement to the electronic charge-density maps of figure 6. The Mulliken net charges
for titanium and boron atoms at ambient pressure in TiB2 are equal to qTi = 0.376 and
qB = −0.188, suggesting a charge transfer from titanium to boron. This result is in accordance
with a recent experimental finding confirming charge transfer from metal to boron in a similar
compound, namely TaB2 [42], and also with other theoretical results, such as those of Tian
and Wang [6] and Mizuno et al [43].
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(d)

(c)

(b)

(a)

Figure 6. Charge-density difference maps. From the top to the bottom: planes parallel to the
basal plane, (a) occupied by boron and (b) by titanium, and plane 110, perpendicular to (a) and (b),
containing both titanium and boron atoms, (c) at zero pressure and (d) at 115 GPa. The contour lines
are drawn at intervals of 5 × 10−3 e Bohr−3. Continuous, dotted and dot–dash curves correspond
to positive, zero and negative charge density relative to a pure superposition of atomic charge
densities. (These figures can be seen as colour maps at http://www.if.ufrgs.br/˜perott/tib2.htm. At
this site there is also an animation illustrating the effect of pressure on the TiB2 charge-density
distribution.)

Our results agree with the experimental charge-density distribution reported by Will and
Kirfel [44] as regards a charge excess at the middle point between in-plane boron atoms.
However, the charge-density maps in figure 6 differ qualitatively, in at least one respect, from
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Table 6. Dependency on pressure of the Ti and B net charge and valence shell population in TiB2.

Ti B

P (GPa) qTi (|e|) 4sp 5sp 3d qB (|e|) 2sp 3sp

−21.7 0.492 4.757 1.729 2.105 −0.246 1.456 1.792
−3.22 0.396 4.746 1.762 2.175 −0.198 1.533 1.667

0 0.376 4.745 1.768 2.189 −0.188 1.542 1.648
22.6 0.280 4.734 1.803 2.259 −0.140 1.619 1.523
59.6 0.140 4.719 1.854 2.360 −0.070 1.713 1.359

115 −0.030 4.701 1.919 2.480 0.015 1.818 1.169

Table 7. Variation with pressure of the bond-overlap population in TiB2. Distances between atoms
are quoted in ångströms. B′ and Ti′ stand for out-of-plane boron and titanium, respectively.

P (GPa) Ti–Ti dTi−Ti Ti–B dTi−B B–B dB−B B–B′ dB−B′ Ti–Ti′ dTi−Ti′

−21.7 0.057 3.091 0.097 2.459 0.223 1.785 0.005 3.384 0.007 3.384
−3.22 0.059 3.029 0.100 2.395 0.213 1.749 0.006 3.272 0.008 3.272

0 0.058 3.027 0.101 2.383 0.210 1.748 0.007 3.240 0.009 3.240
22.6 0.061 2.961 0.102 2.328 0.202 1.709 0.007 3.161 0.009 3.161
59.6 0.063 2.886 0.102 2.259 0.188 1.666 0.009 3.050 0.009 3.050

115 0.065 2.805 0.101 2.186 0.159 1.619 0.010 2.935 0.007 2.935

those of Will and Kirfel. The Fourier synthesis of the electronic charge-density distribution
on the 110 plane, as given in reference [44], shows a charge accumulation concentrated along
the B–B bond, with the boron surrounded by a negative charge-density envelope. In contrast,
our results show a broad, positive charge-density ‘wrapper’ around boron, that enlarges with
pressure, as can be seen in figure 6(d). This positive charge density around boron actually
overflows along the c-axis, bridging the gap between the boron layers with a continuous,
bimodal excess of electronic charge, running directly along the B–B lines perpendicular to
the basal plane, and not half-way between each pair of B atoms, as suggested in reference
[44]. It is important to remark that both our results and those of Will and Kirfel show a non-
negligible interaction along the c-axis between stacking borons, a finding contrary to the usual
assumption of a ‘planar’ structure for TiB2. As the result of DFT calculations, van Camp and
van Doren [13] found a fairly uniform charge density between the basal planes of titanium
diboride. They did not reported any feature pointing to a particular interaction between boron
planes, in contradiction with our results. In this respect, it was recently shown that the exact
treatment of exchange in HF approximation is of primary importance in the description of the
charge build-up at the middle point of covalent bonds [14]. Consequently, it is not surprising
that the bimodal charge accumulation along the line joining boron atoms from adjacent planes
was not revealed by previous DFT calculations, in which exchange was taken into account
only approximately. Without some degree of directional bonding between boron planes, it is
somewhat hard to explain the relative strength of titanium diboride along the normal to the
basal plane. It would be of great interest if further experimental work could verify to what
extent these subtle features in figure 6 are actually present in the electronic charge distribution
of TiB2.

Upon pressure increase to 115 GPa, the charge-density difference at the middle point
between in-plane borons increases by about 20%, while the bimodal charge build-up between
boron layers grows by 50%. The comparison between the charge-density difference maps
at zero pressure and that at 115 GPa, shown in figures 6(c) and 6(d), respectively, can give
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some insight into the origin of the rapid increase of both linear bulk moduli Ba and Bc with
pressure. Indeed, the main effect of the increasing pressure on the electron distribution in
TiB2 is to promote a charge transfer from the region around the titanium to the vicinity of
the boron atoms. This occurs in apparent contradiction with the decrease of the B–B bond-
overlap population (see table 7). In fact, the Mulliken population analysis indicates a growing
population of the Ti 5sp and 3d valence shells, and that of B 2sp, at the expense of a decrease
of the boron diffuse 3sp shell population. However, the charge transferred to the outermost
shells of Ti, and to the B 2sp shell, seems to concentrate in the neighbourhood of the boron
atoms, with a consequent stiffening of B–B bonds, both those in the plane and those parallel
to the c-axis. The net effect of this increase in charge transfer with pressure is the large values
found in section 3 for both linear bulk moduli pressure derivatives, B ′

a0 and B ′
c0. This also

helps one to work out how the boron planes in TiB2 can become stiffer than the carbon planes
in graphite at high pressures.

Therefore, the picture that emerges from the analysis of the charge-density distribution in
titanium diboride, as calculated within the HF-LCCO approximation, is that the TiB2 crystal
structure can be best viewed as a stacking of interacting boron planes forming cages, inside
which rest the titanium atoms. These boron cages are connected together not only along the
basal planes, but also, to some extent, along the c-axis. This picture can help one to understand
the mechanical properties of titanium diboride, particularly its high hardness and the relative
isotropy of its elastic moduli.

6. Conclusions

In this work we were concerned with the structure, equation of state, elastic properties and
electronic charge distribution of TiB2. Our results are in good agreement with the available
experimental data, mainly for the lattice parameters. Concerning the TiB2 bulk modulus, there
is a considerable spread in both theoretical and experimental values, as was shown in table 2.
Our result (B0 = 292 GPa) seems to be quite reasonable for a hard material such as titanium
diboride, and also agrees with the recently measured value for the homologous compound
VB2, whose preliminary analysis points to a value of B0 around 330 GPa [45].

This work also represents one more test of the suitability of the HF approximation, as
implemented in the CRYSTAL95 code, for the description of periodic systems with metallic
character [32,46,47]. In fact, the comparison of our results with experiment shows that, despite
the lack of any treatment of the electronic correlation, the periodic HF-LCCO approximation
provides good estimates for the structural parameters and reasonable values for the elastic
moduli of titanium diboride.

The analysis of the charge-density distribution in TiB2 showed a non-negligible, bimodal
excess charge accumulation running along the B–B lines perpendicular to the basal planes.
Our results differ qualitatively from the early observations of Will and Kirfel [44], as well as
that of van Camp and van Doren [13], and suggest that the electronic charge distribution in
titanium diboride should be subjected to further experimental investigation. The main effect of
pressure on the electronic density maps is a continuous charge transfer from the neighbourhood
of the titanium to a charge envelope developing around boron, and also to the bimodal charge
build-up bridging the boron layers, a feature with increasing significance at high pressures.

On the basis of the relative isotropy of the elastic properties of TiB2 as well as the analysis
of its electronic charge-density distribution, we suggest, in accordance with reference [44],
that the crystal structure of titanium diboride can be best described as constituted by stacking
layers of boron, interacting in a non-negligible way along the c-axis and forming cages, inside
which rest the titanium atoms. The metal cores, of course, also contribute to the overall
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structural stability, but the direct interaction between borons along the c-axis should contribute
significantly to the rigidity of the titanium diboride structure. This represents a significant
change in the way of thinking about the TiB2 crystal structure.
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